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The challenges of predicting 
pesticide exposure of honey bees at 
landscape level
Noa Simon-Delso1, Gilles San Martin  2, Etienne Bruneau1, Christine Delcourt1 & Louis 
Hautier2

To evaluate the risks of pesticides for pollinators, we must not only evaluate their toxicity but also 
understand how pollinators are exposed to these xenobiotics in the field. We focused on this last point 
and modeled honey bee exposure to pesticides at the landscape level. Pollen pellet samples (n = 60) 
from 40 Belgian apiaries were collected from late July to October 2011 and underwent palynological and 
pesticide residue analyses. Areas of various crops around each apiary were measured at 4 spatial scales. 
The most frequently detected pesticides were the fungicides boscalid (n = 19, 31.7%) and pyrimethanil 
(n = 10, 16.7%) and the insecticide dimethoate (n = 10, 16.7%). We were able to predict exposure 
probability for boscalid and dimethoate by using broad indicators of cropping intensity, but it remained 
difficult to identify the precise source of contamination (e.g. specific crops in which the use of the 
pesticide is authorized). For pyrimethanil, we were not able to build any convincing landscape model 
that could explain the contamination. Our results, combined with the late sampling period, strongly 
suggest that pesticides applied to crops unattractive to pollinators, and therefore considered of no risk 
for them, may be sources of exposure through weeds, drift to neighboring plants, or succeeding crops.

Pollinators like bees cover very large areas every day, visiting numerous plants for nectar, pollen, or gum collec-
tion and water sources. So doing, they also unintentionally collect airborne particles or substances diluted in 
the air. This has lead to using honey bees, a species often used as a model, and beekeeping products as biological 
indicators for environmental monitoring1–18. Monitoring of exposure to various environmental contaminants 
has already been carried out; these contaminants include heavy metals2, 5, 14, 15, 17, pesticides3, 4, 11–13, polycyclic 
aromatic hydrocarbons6, 7, 9, 10, 18 and radioactivity16. Unfortunately, it is often not possible to identify the specific 
sources of contamination.

The exposure of honey bees to pesticides has been linked to increased probability of colony disorders and 
losses19–21, alone or in combination with other stress-creating factors like poor nutrition or pathogen and parasite 
loads22–24. For this reason, it is crucial to understand the possible exposure pathways of honey bees to pesticides 
once they are released in the environment. Pesticide risk assessment is not just about the evaluation of the toxicity 
of the products. Ideally, we should also be able to accurately estimate how living organisms will be exposed to 
these products in the environment.

Efforts to model the exposure of bees to pesticides have been carried out recently for risk assessment purposes. 
Some models aim to estimate direct contact exposure for spray applications25, while others have focused on con-
tact exposure through dust26 or on estimating pesticide intake27–29. Several routes of exposure are today aggre-
gated for a more comprehensive estimation of the exposure of the honey bee colony30. However, more quantitative 
data on residue levels and their impacts on bee and colony are still needed31.

On the other hand, models of honey bee colony dynamics already integrate a number of stressors, and are a 
promising tool for impact evaluation of land management or stressors like pesticides at the landscape level32, 33. 
The quality of these models will depend on their capacity to predict the sources of contamination. The aim of this 
study is to test if it is feasible to identify the contamination origin by modeling the exposure probability at the 
landscape level.
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We study the relationship between pesticide contamination of pollen pellets and both the botanical origin of 
the pollen and the areas of grasslands and different crops at four spatial scales around the apiaries (n = 40). Three 
pesticides with different physico-chemical properties are examined in detail as case studies. The results are inter-
preted relative to the authorized uses of these pesticides in the different crops present in the potential foraging 
area of honey bees. The aim here is therefore not to evaluate the toxicity of these pesticides or the consequence of 
the contamination on honey bee health, but to explore the contamination pathways and to evaluate the method-
ology on these case studies.

Results
We consider three main data sets for the analyses: (1) pesticide load of pollen; (2) botanical origin of pollen and 
(3) landscape around the apiary.

Pesticides. About half of the analyzed samples contained at least one pesticide (n = 28/60). The most frequent 
were two fungicides, boscalid (n = 19, 31.7%) and pyrimethanil (n = 10, 16.7%), and one insecticide, dimethoate 
(n = 10, 16.7%). Boscalid residues ranged from 0.70 to 512 µg/kg, pyrimethanil residues ranged from 0.60 to 
21.70 µg/kg and dimethoate residues ranged from 0.21 to 1.4 µg/kg (Supplementary Information 1 Table S1b). 
Four other active ingredients (a.i.) were detected with lower frequency (n = 1): trifloxystrobin, kresoxim-methyl, 
cyprodinil (fungicides) and thiamethoxam (a neonicotinoid insecticide) (Fig. 1). Eleven samples (18.3%) con-
tained two or more a.i. simultaneously, reaching a maximum of three a.i. per sample and five a.i. per apiary. 
Pollen samples collected in July-August were more frequently contaminated than those from September-October 
(n = 18/29 and n = 10/31 respectively, binomial GLM, Likelihood Ratio (LR) = 5.7, df = 1, p = 0.017, Fig. 1). 
However, despite the small number of October samples analyzed, we were surprised to detect boscalid contami-
nations as late as 14 October.

Pollen botanical origin. During the period considered (late July-October) the most abundantly collected 
pollen grains belonged to Brassicaceae, Hedera elix (ivy), Trifolium spp., Phacelia tanacetifolia, Rosaceae and 
Asteraceae (Supplementary Information 1 Fig. S2b). The August samples were characterized by more diversified 
pollen resources with predominance of Trifolium spp., Rosaceae and Asteraceae (including Taraxacum spp.) pol-
len. The pollen collected in September and October was less diversified and characterized by a higher abundance 
of ivy and P. tanacetifolia pollen (Supplementary Information 1 Fig. S2a). Brassicaceae pollen was found to be 
used during the whole period under review. These most abundant pollen types were also collected by 35/40 
(87.5%) of the apiaries with the exception of Rosaceae (24/40, 60%) and P. tanacetifolia (12/40, 30%). This indi-
cates that P. tanacetifolia fields are less present around the apiaries, but that they are massively visited by bees 
when they are present.

Landscape description. A high correlation exists between different crop areas (including grasslands), espe-
cially at the highest spatial scale (3000 m radius buffers) (Supplementary Information 1 Fig. S1c). These correla-
tions are particularly high (0.78–0.93) for cereals, beet, potato and vegetables areas (Supplementary Information 1 
Table S2a). Grassland areas are negatively correlated with most crop areas. The exploratory analysis showed a 
gradient in landscape composition around the apiaries: from landscapes dominated by crops to landscapes dom-
inated by grasslands or with very little agricultural land use (urban or forest zones). The samples contaminated 
with pesticides are clearly more frequent in landscapes dominated by crops (Fig. 2). Cereals are present around 
all apiaries in 3000 m buffers. However, zooming into a radius of 500 m around the apiaries, one can divide the 
landscape into three groups: (1) dominance of cereals, beets and potatoes corresponding to the most intensive 
agricultural landscape; (2) dominance of cereals and grasslands (without beet and potato crops) corresponding 
to more extensive crop landscapes; and (3) areas dominated by grasslands and without cereals, beets and potatoes 
(clustering with heat map - see Supplementary Information 1 Fig. S1a and b).

Figure 1. Frequency of pollen contamination per month and for each pesticide. Two samples from July are not 
shown. No pesticides were detected in these two samples. I = Insecticide, F = Fungicide.
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Case study 1 – Predicting bees’ exposure to boscalid. Boscalid is a carboxamid fungicide34 with sys-
temic properties (octanol-water partition coefficient, log Kow = 2.96). In addition, this active substance is per-
sistent in soil (DT50 typical = 200 days)35. In 2011, it was authorized in Belgium for the treatment of cereals, 
potatoes, rapeseed, many vegetables, fruits and horticulture.

We aimed to identify specific sources of boscalid contamination for bees. However, all crops have a predictive 
power with the exception of corn, rapeseed, cover crops and horticulture (AICc lower than the null model or 
with a difference <2, Table 1). The ten best models include as predictors: all crops and authorized crops areas 
at 3000 m, 1500 m and 1000 m and beet, potato and cereals at 3000 m (AICc differences > 18; Area Under the 
Receiver Operating Curve (AUC) 0.83–0.92). The models using 3000 m buffer data systematically have a better 
predictive performance, while the models using 500 m buffers systematically have the lowest one. Beet area in 
a 3000 m buffer is the best predictor of boscalid contamination despite the fact that the use of boscalid is not 
authorized in this crop. This predictor is four times better (ratio of AICc weights) than the second, using all crops 
as variable (i.e. areas of all crops combined) and more than 15 times better than the third, including potato and 
cereals areas in 3000 m (i.e. crops for which boscalid is authorized).

The predicted probability of boscalid contamination is close to 0 when no boscalid-authorized crops are pres-
ent in a radius of 3000 m around the apiary and rises to 0.9 for areas of boscalid-authorized crops of 1500 ha 
(Fig. 3).

As for the botanical origin, Rosaceae and P. tanacetifolia pollen are systematically the most important predic-
tors of boscalid contamination (AICc variable weight > 0.71- Table 2, positive relationship). There is no difference 
in boscalid contamination between July-August and September-October (AICc variable weight = 0.267).

Case study 2 – Predicting bees’ exposure to pyrimethanil. The second most frequently detected 
pesticide is pyrimethanil, a fungicide with systemic properties (log Kow = 2.84) and moderate persistence in soil 
(typical DT50 = 55 days)36. In 2011 it was authorized in Belgium for fruit production and horticulture (including 
plant nurseries and Christmas trees).

It was impossible to predict pyrimethanil contamination based on its authorized uses (Table 1). We even found 
contaminated pollen samples coming from apiaries with no crops in a radius of 3000 m for which pyrimethanil 
use is authorized (Fig. 3). The only crop that could predict the frequency of pyrimethanil contamination to a 
certain extent was rapeseed, for which pyrimethanil use was not authorized in Belgium in 2011 (AICc difference 
with the null model: 6.3–4.4). However, the AUCs of these rapeseed models are quite low (0.73–0.75), meaning 
that their discrimination capability is not very good with this dataset and should be even lower with a different 
testing dataset. Areas of flax and horticulture in a radius of 3000 m are weak predictors of pyrimethanil contami-
nation (AICc difference 3.3 and 1.7, respectively). Pyrimethanil use is authorized for horticulture, but the model 
slope is negative, which means that we tend to observe less pyrimethanil contamination when the horticulture 
areas increase.

Among the models considering the pollen types, both the sampling period and the Brassicaceae pollen are 
good predictors of the presence of pyrimethanil (AICc variable weight > 0.95, Table 2). The contamination is 
significantly more frequent in July-August than in September-October. After controlling for the period, we find a 
strong positive relationship between pyrimethanil and the abundance of Brassicaceae pollen. This pollen proba-
bly comes from wild plants or cover crops like mustard, since rapeseed does not bloom at this time of the year in 
Belgium. Hence these pollen results (pyrimethanil-Brassicaceae) do not particularly support the landscape results 
(pyrimethanil-rapeseed).

Figure 2. Principal Component Analysis distance biplot of the areas of crops and grasslands 3000 m around the 
apiaries. The areas were square root transformed and standardized before the analysis.
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Case study 3 – Predicting bees’ exposure to dimethoate. Dimethoate is an organophosphorous 
insecticide, systemic (log Kow = 0.704), and non-persistent in soil (typical DT50 = 2.6 days)37. It was authorized 
in 2011 in Belgium to control insect pests in beets, peas, multi-annual fruit production, many vegetables, horti-
culture (incl. plant nurseries and Christmas trees), and until 2010 for potatoes.

Cereals, beet, all crops and authorized crops areas were the best predictors of pollen contamination by 
dimethoate (ten best models with differences of AICc relative to the null model between 35 and 17, AUC between 
0.92 and 0.99, Table 1). Many other crop areas also had a good predictive power: vegetables, flax, grassland, horti-
culture, or potato. The models that consider the cropped areas at 1000 m and at 1500 m systematically had better 
predictive power, while the 500 m spatial scale systematically provided the worst models. Cereal areas in a 1000 m 

Boscalid

ID Buffer Variable AICc
∆ 
AICc

AICc 
w AUC Slope LRT p

1 3000 Beet 40.01 0 0.604 0.894 0.33 29.14 <0.0001
2 3000 All Crops 42.81 2.798 0.149 0.894 0.18 26.34 <0.0001
3 3000 Authorized Crops 44.76 4.750 0.056 0.883 0.19 24.39 <0.0001
4 3000 Potato 45.24 5.231 0.044 0.920 0.36 23.90 <0.0001
5 3000 Cereals 45.74 5.734 0.034 0.863 0.21 23.40 <0.0001
6 1000 All Crops 46.06 6.054 0.029 0.846 0.47 23.08 <0.0001
7 1500 All Crops 46.40 6.386 0.025 0.851 0.31 22.75 <0.0001
8 1500 Authorized Crops 47.03 7.016 0.018 0.854 0.34 22.12 <0.0001
9 1000 Authorized Crops 47.35 7.344 0.015 0.840 0.53 21.79 <0.0001
10 500 All Crops 48.79 8.779 0.007 0.834 0.70  20.36 <0.0001
11–41 (…)
42 — NULL MODEL 66.92 26.91 0 0.500 — — —
43–55 (…)
Pyrimethanil
1 3000 Rapeseed 42.18 0 0.287 0.735 0.39 8.55 0.00346
2 1000 Rapeseed 43.69 1.515 0.134 0.756 0.61 7.03 0.00801
3 1500 Rapeseed 44.25 2.074 0.102 0.731 0.45 6.47 0.01095
4 3000 Flax 46.15 3.970 0.039 0.793 0.24 4.58 0.03240
5 3000 Horticulture 46.82 4.640 0.028 0.641 −1.93 3.91 0.04807
6 500 Beet 47.09 4.908 0.025 0.683 0.47 3.64 0.05643
7 3000 Cover 47.36 5.178 0.022 0.630 0.48 3.37 0.06643
8 500 Potato 47.36 5.184 0.021 0.659 0.46 3.36 0.06666
9 1000 Fabaceae 47.66 5.482 0.018 0.619 0.52 3.07 0.07999
10 3000 Cereals 47.78 5.599 0.017 0.719 0.07 2.95 0.08600
11–12 (…)
13–55 — NULL MODEL 48.5 6.322 0.012 0.500 — — —
14–55 (…)
Dimethoate
1 1000 Cereals 16.52 0 0.989 0.991 3.32 37.55 <0.0001
2 1000 All Crops 26.93 10.40 0.005 0.955 0.93 27.15 <0.0001
3 1500 Beet 29.61 13.08 0.001 0.942 0.77 24.47 <0.0001
4 1000 Beet 30.29 13.76 0.001 0.946 0.97 23.79 <0.0001
5 1500 Cereals 30.68 14.15 0.001 0.906 0.62 23.40 <0.0001
6 1500 Authorized Crops 31.37 14.85 0.001 0.920 0.67 22.70 <0.0001
7 1500 All Crops 31.4 14.88 0.001 0.929 0.46 22.67 <0.0001
8 1000 Authorized Crops 33.26 16.73 0 0.924 0.72 20.82 <0.0001
9 3000 Beet 33.73 17.21 0 0.915 0.36 20.34 <0.0001
10 3000 Authorized Crops 34.36 17.84 0 0.924 0.30 19.71 <0.0001
11–37 (…)
38 NA NULL MODEL 51.85 35.32 0 0.500 — —
39–55 (…)

Table 1. Results of univariate Binomial GLMs modeling the probability that a pollen sample would be 
contaminated by a given pesticide vs the areas of different (groups of) crops and grasslands at different spatial 
scales (Buffer column, in meters). Only the ten best models (lowest AICc) are shown along with the null 
model. LRT = Likelihood Ratio Test statistic (degrees of freedom = 1 for all models). Full tables available in the 
Supplementary Information 1.
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buffer were by far the best predictors of dimethoate contamination (AICc difference = 10.40), having a very high 
explanatory power (AUC = 0.99; AUC = 0.955 for the second best model).

As for the botanical origin, the probability of pollen contamination by dimethoate increases when pollen sam-
ples contain more Vicia spp. or P. tanacetifolia (AICc variable weight > 0.76, Table 2). There is no evidence for a 
difference of contamination between July-August and September-October.

Discussion
Contamination of pollen pellets provide a representative image of flower contamination at a moment in time in 
contrast with the pollen that is stored in the beehive as beebread. The variety and frequency of pesticides detected 
in pollen pellets of our study is surprising for two reasons. Firstly, we did not expect pollen pellets to be contami-
nated with such a variety of pesticides at the latitude of Belgium and at this period of the year (late July-October) 
because few pesticides are applied so late in the season. Secondly, most of the crops with authorized uses for the 
detected pesticides do not bloom at this time of the year, which is confirmed by the botanical origin of pollen 
samples, containing mainly pollen from wild flowers and crops grown as cover or catch crops. As a result, the 
current approach of pesticide risk assessment and authorization based on the attractiveness to bees of different 
crops proves to be erroneous. Our results entail that pesticides applied to crops unattractive to bees as food 
sources like cereals or sugar beets can in fact be a source of exposure, either through weed contamination, drift or 
by the mobilization of residues of systemic/persistent products by succeeding crops. These results provide strong 
evidence that the concept of “crop not attractive to bees” is irrelevant to evaluating the risk of pesticide exposure. 
This conclusion is further supported by our landscape analyses. Our results add support to an increasing body of 
evidence indicating that pesticides applied to a crop are much more mobile than expected. Contamination of pol-
len pellets collected by bees late in the season, outside the period of pesticide application, has also been observed 
in other studies21, 38, 39, and contamination of wild flowers of the field margins has also been described40–42.

Figure 3. Observed proportion of samples contaminated for each pesticide and the corresponding predicted 
value (binomial GLM) relative to the areas of authorized crops around the apiary.

Boscalid Pyrimethanil Dimethoate
w coef se w coef se w coef se

Intcpt 1 −2.760 1.456 Intcpt 1 −4.179 2.274 Intcpt 1 −3.413 1.614
ros 0.834 0.323 0.158 SepOct 0.959 −3.282 1.288 vic 0.996 0.822 0.269
pha 0.715 0.206 0.119 bra 0.952 0.747 0.341 pha 0.768 0.296 0.160
tar 0.538 0.173 0.132 ivy 0.250 0.002 0.064 ros 0.388 0.109 0.116
bal 0.433 −0.108 0.102 tar 0.248 0.028 0.071 tar 0.280 0.054 0.087
vic 0.395 0.103 0.103 api 0.244 −0.021 0.067 SepOct 0.263 −0.124 0.374
ivy 0.350 0.062 0.071 pha 0.242 −0.014 0.045 api 0.261 −0.043 0.092
bra 0.332 0.056 0.066 ast 0.240 0.017 0.072 ivy 0.260 −0.027 0.061
api 0.273 0.039 0.067 tri 0.240 −0.016 0.065 tri 0.250 0.030 0.071
SepOct 0.267 −0.019 0.321 ros 0.237 0.004 0.048 ast 0.246 −0.029 0.084
ast 0.243 −0.004 0.058 vic 0.232 −0.011 0.068 bra 0.230 0.007 0.055
tri 0.231 0.002 0.042

Table 2. Results of the model selection for the GLMs modeling the presence of pesticides in the pollen vs 
the abundance of different pollen taxa. “w” = AICc variable weight, “coef ” = models averaged coefficient, 
“se” = unconditional standard error. We interpreted only the explanatory variables with w > 0.60 (in bold). 
Intcpt = model intercept and SepOct = binary explanatory variable corresponding to the period: July/August 
or September/October. Abbreviation of the pollen types: api = Apiaceae, ast = Asteraceae, bal = Balsaminaceae, 
bra = Brassicaceae, ivy = Hedera elix, pha = Phacelia tanacetifolia, ros = Rosaceae, tar = Taraxacum spp., 
tri = Trifolium.
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Simon-Delso et al.19 described pesticides found in beebread collected during the same period of the year as 
the present study in 21 apiaries. Boscalid, the most frequently detected molecule in pollen pellets (present study), 
was observed in beebread as the third most frequent residue. Pyrimethanil was reported in ten samples in pollen 
pellets, and was the sixth most common contaminant in beebread, after the fungicide iprodione and the syner-
gist piperonyl butoxide. The insecticide dimethoate was detected in pollen pellets but not in beebread. Of the 
active ingredients detected only once, only trifloxystrobin was also found in beebread. These different contami-
nation profiles indicate the value of analyzing different beekeeping matrices. Pesticides with low persistence like 
dimethoate are more likely to be found in pollen pellets than in beebread because they are collected at the beehive 
entrance, while beebread is pollen processed and stored within the colony during longer periods. However, this 
also indicates how difficult it is to characterize the whole range of pathways of pesticide exposure for honey bees.

There are long debates about the foraging radius of honey bees around their colony, most likely due to the 
variability of and dependence on the resources available in the surroundings, the weather conditions and the 
needs of the colony43. In our study, based on pollen samples collected from August to October, the models with 
best predictive value for pollen contamination were almost systematically those that considered crops located in 
a radius of more than 500 m, and up to 3000 m from the colony. Future work could test if differences in foraging 
range are translated into differences of pesticide exposure. However, the higher predictive power of 3000 m mod-
els may be independent from the foraging distance of bees because crop surfaces at higher landscape scales could 
just be a better indicator of agricultural practices in the close surroundings of the apiary (crops rotations, more/
less intensive agriculture, etc.; see below).

We aimed to identify potential contemporaneous boscalid uses to explain direct pollen contamina-
tion. Boscalid-based products are authorized for a wide range of crops. They can still be used in orchards in 
August-September, a few weeks before the fruit harvest. They can also be used in August on beans. Consequently, 
direct exposure to treated crops like vegetables or orchards should be considered. However, the best predictor of 
boscalid contamination in pollen samples is sugar beet area in a radius of 3000 m, despite the fact that boscalid 
use is not authorized for this crop. Sugar beet is typically included in a crop rotation scheme with cereals and 
potatoes (sugar beet or potato/wheat/barley), in the most intensive agricultural areas of Belgium (Sandy-Loam 
Region). In contrast with cereals that are widely farmed even in less intensive areas, sugar beet may be a better 
indicator of cereals farmed in a more intensive way and hence potentially receiving more pesticides. After the beet 
model, all crops is the model with best predictive value and the most frequently found among the ten most pre-
dictive models (at all four landscape scales), followed by authorized crops. This, together with the fact that indi-
vidual crops (i.e. potatoes and cereals) complete the list of the ten most predictive models, indicates that direct 
exposure to treated crops is unlikely to be the only source of contamination, as pesticides containing boscalid 
are typically applied to these crops much earlier in the season. Furthermore, with the exception of beans, none 
of the crops for which boscalid is authorized are attractive to honey bees for food collection at this time of the 
year. The high persistence of the molecule could possibly explain contamination later in the year or even during 
the next year. This may lead to the contamination of wild flowers or of succeeding crops like cover/catch crops. 
Contamination linked to cover/catch crops is supported by the positive relationship between boscalid presence 
and the abundance of P. tanacetifolia pollen observed in this study. P. tanacetifolia is not native in Belgium and is 
only used as a catch crop and rarely in gardens. Other persistent and systemic pesticides (e.g. neonicotinoids) can 
contaminate wild flowers in field margins41, 42 and succeeding crops44–47.

The case of pyrimethanil pollen contamination is difficult, because none of the authorized uses predict its 
presence. In addition, we found a number of positive samples (n = 4) with no crops for which this pesticide was 
authorized in a radius of 3000 m around the corresponding apiary. At this point, we considered the following 
hypotheses: (1) the contamination came from further than 3000 m; (2) the notification of crop areas for which 
this fungicide is authorized is not complete (e.g. Christmas trees, some horticultural or vegetable crops); (3) 
there is an illegal use of pyrimethanil in rapeseed earlier in the season (rapeseed is already harvested at this 
time of the year but the product is moderately persistent). The later hypothesis seems unlikely because there are 
many other efficient fungicides authorized for rapeseed and the model discriminatory power was quite low for 
this crop. Pyrimethanil-based products are also used in orchards at the beginning of the season, but we found 
no support for a pyrimethanil-Fruit areas relationship. These products could also be used for the production of 
some specific vegetables like peas, beans, and other legumes. However, in the year of the study, 2011, these uses 
were not authorized in Belgium. Pea fields that are typically harvested in July could be followed by mustard as 
cover/catch crop. This would match the link we found between the residues of pyrimethanil and the pollen of 
Brassicaceae in August. Models specifically using areas of cultivated peas and broad beans (instead of the grouped 
category fabaceae) showed better predictive value at 1500 m and 1000 m (difference of AICc = 3.60 and 2.85, 
Likelihood Ratio Test statistic (LRT p values = 0.016 and 0.024), but their discrimination power was not very high 
(AUC = 0.67 and 0.68 - see Supplementary Information 1 Table S6 for details). As a result, this hypothesis remains 
only a putative scenario that should be tested by specific sampling on peas in the field.

Dimethoate is not a persistent pesticide. We can therefore assume that pollen contamination came from an 
application during August-September. The best predictors of the presence of dimethoate in pollen were cereals 
(non-authorized use and crop already harvested at this time of the year), beet (authorized use, but unlikely to be 
applied because there are no insect pests at this time of the year), and all crops. At this time of the year, vegetables 
(e.g. carrots and Brussels sprouts) are the only crops possibly being treated with dimethoate for which the area can 
be used to predict the frequency of dimethoate in our models. As a result, the fact that cereals or sugar beets are 
the best predictors for dimethoate contamination could be because these large arable crops are good indicators of 
intensive, large scale, vegetable production, which may be included in crop rotation schemes: there is a strong cor-
relation (R > 0.77) between vegetables and beet, cereals and potato areas (Supplementary Information 1 Fig. S1c). 
However, none of these vegetable crops are in bloom at the sampled period (except occasionally carrots), which 
made us wonder about the pertinence of this hypothesis. The palynological results show that pollen from Vicia 
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spp. and P. tanacetifolia are positively linked with the presence of dimethoate. It is common agricultural practice 
in the region to include flowering strips in the borders of vegetable fields. Therefore, a possible explanation could 
be that Vicia spp. occur in field margins or that P. tanacetifolia is planted in flowering strips and that their flowers 
get contaminated by drift with dimethoate applied on the field. The abundance of Vicia spp. pollen is positively 
correlated to vegetables, beet, potato and cereals areas (see Supplementary Information 1 Fig. S3).

In conclusion, our findings show that the highest spatial scales (3 km) provide the best predictive power for 
pollen contamination. Pesticides applied to “non-bee-attractive” crops like cereals or sugar beets, generally con-
sidered of negligible risk for bees, can in fact be a source of exposure through weeds, through drift to neighboring 
plants or through succeeding crops. These results imply that the concept of “bee-attractive crop” (i.e. a crop visited 
by bees for nectar and/or pollen collection) is irrelevant for risk assessment and should not be used as a criterion 
for pesticide authorization. At the landscape level, honey bee exposure to pesticides depends on pesticide use 
level, physicochemical characteristics, period of the year and landscape composition. Our findings show that the 
task of modeling the exposure of bees to pesticides once released in the environment may be more complicated 
than expected. We were able to efficiently predict exposure for two pesticides by using very broad indicators of 
cropping intensity, but it remains difficult to track the direct source of contamination in the landscape. For the 
third pesticide, we were not able to find any convincing landscape model that could explain the contamination. 
On the other hand, our results have consequences for policies and agricultural practices intended to promote the 
multiplication of nutritional resources for pollinators, like flowering strips, buffer zones, catch crops with mellif-
erous flowers, etc. These should be designed and applied in parallel to policies and practices leading to pesticide 
use reduction i.e. integrated pest management, organic farming or agro-ecological practices, precision farming 
and favoring non-persistent/non-systemic pesticide active ingredients. Without such considerations, instead of 
favoring pollinators through habitat improvement or food availability, we may transform these areas into highly 
risky zones or even ecological traps for pollinators.

Methods
Field work – sample collection. A group of voluntary beekeepers were requested to participate in the 
study, with a total of 40 apiaries. Pollen samples (n = 80) were taken from two random colonies per apiary with 
the help of a PVC pollen trap (Nicot®), placed during one or two days to collect a minimum of 20 g of pollen pel-
lets. Samples from both colonies were pooled together. The samples were collected once, twice or four times per 
month from mid-July to mid-October 2011. Most of the pollen samples were collected in August and September 
2011 (n = 32 and 36 respectively). Two pollen samples were collected in July and ten samples in October. The July 
samples were taken on 24 and 30 July, and were similar to the August samples in terms of botanical origin of the 
pollen (Supplementary Information 2 at https://figshare.com/s/86785808b5709331aa1c). One sample collected 
in April 2012 was removed from the dataset before analysis because this unique sample had a completely different 
pollen composition and was not comparable to the other samples. Samples were placed in hermetic plastic bags 
and stored at −20 °C until analysis.

Sample processing. Samples collected from the same apiary during the same month were pooled together 
and thoroughly mixed. One gram of the blend was sampled for palynological analysis. Whenever the sample 
quantity allowed it, at least 42 grams of the monthly blend were shipped for pesticide residue analysis (n = 60). 
Frozen samples were sent for pesticide analysis in dry ice.

Pesticide analyses. The monthly samples of pollen pellets were sent to Floramo Corporation, Italy. A 
multi-residue analysis was used based on the methodology described by Wiest et al.48, and 45 pesticides/metabo-
lites were analyzed in pollen pellets (Supplementary Information 1 Table S1). The extraction method was based on 
a modified “QuEChERS method”: two-step Solid/Liquid extraction with solvent and MSPD (Matrix Solid Phase 
Dispersion) purification as follows: 10 g of the pollen sample extracted with acetonitrile/water followed by liquid/
liquid purification with hexane and combined with MSPD purification on PSA and salts. Finally, the purified 
extract was concentrated below 100 µl and injected into UPLC-MS/MS (Ultra Pressure Liquid Chromatography 
coupled with tandem mass spectrometry) and gas chromatography coupled with tandem mass spectrometry 
(GC-MS/MS) programmed in MRM (Multiple Reaction Monitor) mode with two transitions/a.i. Pesticide analy-
sis was possible for 28 samples from August and September each, 1 sample from July and 3 samples from October.

Palynological analyses. The extraction and homogenization method was inspired by the harmonized 
method of pollen analysis with acetolysis developed by Erdtman49. A minimum of 1000 pollen grains were 
counted and identified per slide50 at 500x microscopic magnification as described by von der Ohe et al.51. Pollen 
grains were generally identified up to their taxonomical family due to the difficulty of differentiating plant species. 
In a few easy cases, identification was performed up to genus level (Taraxacum spp., Trifolium spp., etc.) and to 
species level for ivy (Hedera helix) and lacy phacelia (Phacelia tanacetifolia).

Landscape data. We measured the areas of different kinds of detailed agricultural land use (i.e. different 
crops and grasslands) in a circle (buffer) with a radius of 500, 1000, 1500 and 3000 m around the 40 apiaries. We 
used the official Land Parcel Identification System (SIGEC) used by the Walloon administration to distribute 
agricultural subsidies to the farmers. This land use information was not available for one of the apiaries located 
outside the Walloon region. These detailed land use categories (n > 50) were pooled into thirteen more general 
categories (“crops”) according to their agronomic similarities (see Supplementary Information 1 Table S2b). For 
each of the detailed land use categories, we determined whether the three most frequent pesticides observed in 
this study could be used by checking the official pesticide use authorizations in Belgium in 2011. This allowed 
us to calculate the areas of authorized crops for each of these pesticides around the apiaries (see Supplementary 
Information 1 Table S2a).
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Statistical analyses. All analyses were performed in R52. All raw datasets and R scripts are provided as 
supplementary information (Supplementary Information 2 at https://figshare.com/s/86785808b5709331aa1c). 
For confidentiality reasons, we are not allowed to share the exact location of the apiaries nor the agricultural land 
use geodata.

We considered three main datasets for the analyses: pesticides, landscape (areas of different crops and grass-
lands) and pollen (taxonomical origin). For the pesticides we used only presence/absence information in each 
pollen sample. The pollen samples had a variable number of total pollen grains (around 1000). To make direct 
comparison possible, the number of pollen grain (x) was standardized as x * 1000/N (N = total grain number in 
the sample) and rounded to units.

Predicting bees’ exposure to different pesticides with crops and grassland areas. As crop 
areas are only available at the apiary level, we used binomial GLMs with the proportion of positive samples in 
a given apiary as the response variable for each pesticide. Preliminary analyses showed that the crop areas are 
strongly correlated, causing multicollinearity problems when they are used as predictors in multiple regression 
approaches. Grouping correlated predictors was not an option here because we wanted to keep them separated 
to interpret the results relative to the authorizations of pesticide use for each crop. Consequently, we decided to 
use binomial GLMs with only one explanatory variable at a time. We built separate univariate models for each 
grouped land use surface and for each of the four spatial scales. We also used two additional predictors (at four 
scales): 1) all crops: sum of the crop areas i.e. without grasslands and without taking into account the product 
authorizations; 2) authorized crops: sum of the crop areas for which the product is authorized. A “null model” was 
also built with no explanatory variable, i.e. this model estimates the mean proportion of samples contaminated in 
the dataset. All areas were square root transformed, because this improved the quality of the models (i.e. linearity 
and homogeneity of the residuals). At the lowest spatial scales (500 m and 1000 m) some of the minor crops were 
totally absent from all apiaries and the corresponding models were therefore not estimated.

These models were compared in terms of AICc and AICc weights53 between each other and more particularly 
with the “null model”. Models with lower AICc are considered to be better (good fit but not overly complex to 
allow extrapolation to other datasets), and a difference of AIC lower than 2 is often considered as negligible. In 
addition we computed for each single model a likelihood ratio test which compares the model to the null model. 
We also computed the Area Under the Receiver Operating Curve (AUC or AUROC) as a descriptive statistic 
of the capacity of each model to discriminate (in this dataset) between apiaries with the pesticide (frequency 
in the samples > 0) or without it (frequency = 0). An AUC = 1 indicates a perfect discrimination capability (all 
predicted presences are effective and none of the predicted presences are absences). If AUC = 0.5, the model pre-
dictions are as good as pure chance.

We checked the spatial correlation of the best model residuals for each pesticide with a spline correlogram. 
Spatial correlation was always low and not significantly different from 0.

Predicting bees’ exposure to different pesticides with pollen composition. The pollen data are 
available at the sample level and there were no multicollinearity problems with these data. Consequently, we 
computed binomial GLMs with the presence/absence of the pesticide in the sample as response variable and the 
ten most common pollen types as explanatory variables. We also added the period of the year (July-August or 
September-October) as explanatory variable. The pollen data were log(x + 1) transformed because this clearly 
improved the model fit. With 59 pollen samples from 39 apiaries, some pollen samples came from the same 
apiary and were therefore not independent. We first tried to use binomial Generalized Linear Mixed Models 
with the apiary as random effect to take this pseudo-replication into account, but most of these models did not 
converge, probably because most of the apiaries in the sample had only one or two replicates (rarely three). Our 
results with the simple GLMs are therefore probably slightly anti-conservative. We removed the explanatory var-
iable Balsaminaceae because none of the pollen samples containing grains of this family were contaminated with 
dimethoate. This lack of variability posed problems in the statistical analyses.

For each pesticide, we computed models for all possible combinations of explanatory variables (2048 mod-
els) along with their AICc and AICc model weight. The AICc model weight was used to compute shrinkage 
model averaged coefficients, unconditional standard errors and AICc variable weights53. The AICc model weight 
is a measure of model selection uncertainty (probability that a model will have the lowest AICc if we resample 
the data, given a set of models). The AICc variable weights allow us to compare the relative importance of the 
explanatory variables (it gives the probability that a given variable will be in the best - lowest AICc - model if we 
resample the data). We interpreted only the explanatory variables with an AICc variable weight > 0.6. The model 
averaged regression coefficients are shrunk toward 0 when the corresponding explanatory variable is present only 
in “bad” models.

Data availability. Supplementary information is available in a public repository at https://figshare.
com/s/86785808b5709331aa1c
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